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Abstract--The growth of rotationally symmetric vapour bubbles on a horizontal plane has been studied by 
solving the equations of motion numerically. For this purpose, the global collocation method has been 
applied, cf. Zijl [1]. In this way deviations from the spherical bubble shape, which are due to gravity, are 
considered. Restriction is made to the initial stage of contraction of the bubble contact-radius. The numerical 
results following from appropriate initial temperature distributions are in qualitative agreement with 
previous experimental data by van Stralen et al. [-2, 3] on water, boiling at subatmospherlc pressures. 
Quantitative agreement is obtained by fitting only one dimensional parameter, i.e. the initial height of a 
superheated liquid cylinder or hemisphere. Also, experimentally observed oscillations in the equivalent 
bubble radius during growth are introduced numerically. A physical interpretation of this phenomenon is 
given by van Stralen, Zijl and De Vries [4]. The frequency of these oscillations increases with increasing 
pressure, i.e. with increasing vapour density. In addition, both the thickness of the thermal boundary layer 
around the bubble and the instantaneous locations of the isotherms in the surrounding liquid are calculated. 

N O M E N C L A T U R E  

a, (= k/pc), liquid thermal diffusivity 
[mE/s]; 

A, area of the bubble cap [m 2] ; 
aa(t), expansion coefficient in a series; 
ba(t), expansion coefficient in a series; 
c, liquid specific heat at constant 

pressure [J /kgK]  ; 
D, nonlinear differential operator ;  
E+(t), functions representing a memory effect: 
E-(t) ,  of the heat diffusion process [m/s] ; 
F, 2N + 2 dimensional vector function ; 
g, gravitational acceleration [m/s 2] ; 
He, height of a cylinder with superheated 

liquid above heating surface [m] ; 
Ja, { = pc[ T~(O) - ~] /Pd}  Jakob number for 

superheated liquid ; 
k, liquid thermal conductivity [W/mK]  ; 
K, constant number 0 < K < oo ; 
l, latent enthalpy of vaporization [J/kg] ; 
n, unit vector normal to bubble surface; 
N, number  of collocation points minus one;  
p, liquid pressure [Pa l  ; 
Pv, vapour  pressure [Pa]  ; 
PR, liquid pressure at bubble boundary [Pa]  ; 
p~, liquid pressure at great distance from 

the bubble [Pa]  ; 
P,,, Legendre polynomial  of order zero and 

degree n ; 
r, radial coordinate in spherical 

coordinate system [m] ; 
R(& t) ,bubble radius in spherical coordinate 

system Ira] ;  

* Present address: Van't Hoff Laboratory, State University 
of Utrecht, Utrecht. The Netherlands. 

R o radius of a cylinder with superheated 
liquid above heating surface [m] ; 

R~, radius of hemisphere with superheated 
liquid above heating surface [m] ; 

Req  , [ = (3 V/4rc)  1:3] equivalent bubble radius 
[m]; 

R~, R2, principal radii of curvature of the 
bubble boundary I-m] ; 

Ro, ( =  2aTs/pJ(Tg(O)-  Ts) ) equilibrium 
bubble radius [m] ; 

t, time elapsed since the bubble has 
started growth [s] ; 

T(r, ~, t), liquid temperature [K]  ; 
TR(t), mean temperature at the bubble 

boundary [K]  ; 
T~ (0, t), liquid temperature at the outer side of 

the thermal boundary layer [K]  ; 
T~(t), mean liquid temperature at the outer side 

of the thermal boundary  layer [K]  ; 
T s, saturation temperature at pressure 

p~ [K] ;  
Ta(O), initial vapour  temperature at the time 

of nucleation [K]  ; 
u, liquid velocity vector [m/s]  ; 
u v, vapour  velocity vector [m/s] ; 
V, volume of the bubble [m 3] ; 
z, distance normal to the bubble 

boundary [m]. 

Greek symbols 

F, gamma function; 
6, thickness of the thermal boundary 

layer [m] ; 
O, azimuthal angle in spherical coordinate 

system; 
0 o, [ T,(0) - ~ ]  initial superheating of 

the vapour in the bubble [K]  ; 
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I~, ( = cos (~) azimuthal cosine : 
v, liquid kinematic viscosity [m2/s] ; 
p, liquid density [kg/m 3] ; 
p,., vapour density [kg/m 3] : 
~. surface tension coefficient at liquid 

vapour interface [N/m] : 
(/), liquid velocity potential [me/s]. 

Subscripts 

i, number of a temperature point on a line 
characterized by ,'~j; 

j, number of collocation angle 8s: 
v ,  at great distance from the bubble : 
R, at the bubble boundary. 

Superscripts 

mean value : 
differentiation with respect to time [ l s ]  : 
approximate value. 

I. I N T R O D U C T I O N  

1.1. Previous investigations 
Eft?or of bubbles on heat translt, r. Vapour bubbles 

have a substantial influence on nucleate boiling heat 
transfer, and result in an augmentation of the cor- 
responding convective contribution. This is the case 
both in saturated and in subcooled boiling, where the 
bubbles implode rapidly after initial growth. 

The relaxation microlayer theory by wm Stralen 
[5] expresses both bubble behaviour and bubble- 
induced heat transfer at the wall into convection. 
Recently, this model has been extended to combine the 
contribution to bubble growth due to the relaxation 
microlayer (around the lower part of the curved 
bubble boundary) with the contribution due to heat 
transmission through an evaporating microlayer {be- 
neath the bubbleh cf. [2]. The initial superheating 
enthalpy of both microlayers is taken from the cor- 
responding convective thermal boundary layer :.tt the 
wall, which is renewed during the waiting time between 
succeeding bubbles generated at the same nucleation 
site. 

Bubble .qrowth rates. Initial {isothermal) bubble 
growth is governed by liquid inertia, i.e. the bubble is 
blown up due to an excess pressure, which results from 
a superheating of the vapour. This superheating 
decreases gradually due to evaporation at the bubble 
boundary, until advanced (isobarict bubble growth is 
determined by heat- (and mass-) diffusion. 

The theoretical predictions are in qmmtHati\e 
agreement with experimental data on water boiling at 
various subatmospheric pressures. In this model the 
relative height of the relaxation microlayer is fitted to 
the experimental bubble departure radius [3]. Both 
the bubble radius and the departure time increase 
substantially with decreasing pressure. At pressures 
below 3 kPa, the superheating of the bubble boundary 
decreases only slightly, resulting in the occurrence of 
large "Rayleigh bubbles" [3]. The effect of gravity, 
which causes detachment, has not been incorporated 
into this model [2] and another disadvantage is the 

empirical description of the transition between lhe 
modes of initial and diffusion-controlled growfll. 

1.2. Scope qf the present investiqatio,7~ 
Bubble o.scillatiolls. It has bccn >i~ox~n b', ,.~tn 

Stralen, Zijl and De Vries [4], using the theory ot 
fractional derivatives [6], that both the w)lume and the 
temperature of free vapom bubbles may oscillate 
during growth. The nature of these oscillations orig- 
inates from combined liquid inertia and transient heat 
conductJolL which causes ~,he challgcs m liquid ~cl- 
ocity to lax behind changes in excess pressure. Silllllzll 
oscillations in the bubble ~ohunc ha~e been obser',cd 
experimentally by xan Stralen [:1. and ~trc ~!1~> 
obvious from the data presented in [3]. At present, the 
growth of rotationally symmetric vapour bubbles in ~ 
gravitational field is investigated numerically by .,oK- 
ing the Bernoulli equation for the pressure x,,ith the 
global collocation method, cf Zijl [11. 

Various initial temperature distributions m the 
superheated liquid above the ilorizontal v, all ~rc. 
taken, since the initial tield is expected to have , 
substantial effect on bubble growth rates. This effect i.. 
also incorporated into the semi-empirical treatlnent oi 
Mikic ('t a/. [8]. 

2. MATHEMATI(AI ,  FORMI L A T I O N  

Since the density of the vapour in the bubble 
depends only on the hardly varying temperature, the 
vapour may be considered as incompressible. Con- 
sequently one has to start from the Navier Stokes 
equations for an incompressible fluid to describe the 
flow- and temperature fields inside and outside a 
bubble. 

In the present investigation, bubble growth on a llat 
horizontal superheated wall has been studied, cf. Fig. I. 

I 

L i q u i d ~  i g 

i 
l 

FIc}. 1. Rolationally symmetric vapour bubble adhering [o a 
superheated horizontal wall. 

The heat flux at the wall has been neglected. The 
heating surface is assumed to be a phme of symmelry 
between the bubble under consideration and a "'mirror 
bubble". Hence, the normal velocity condition u" n = 0 
is satisfied automatically. Furthermore, the no-slip 
condition does not play a role since the viscous layer, 
along which the liquid moves smoothly, is assumed to 
be thin. For the same reason no assumption needs to 
be made about the contact angle. In addition, it is 
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assumed that the influence of the tangential stress 
condition on the bubble boundary is limited to a thin 
hydrodynamic boundary layer around the bubble. 
This assumption is based on the absence of a viscous 
wake behind a non-translating bubble. Under the 
above mentioned restrictions, potential flow theory 
may be applied in the liquid outside the bubble. 

In order to solve the temperature field, two regions 
are considered: (i) a thin thermal boundary layer 
around the bubble, and (ii) the remaining bulk liquid. 
Since the thermal boundary layer has an overlap with 
the hydrodynamic boundary layer, the flow field in the 
latter can influence the heat transfer rate substantially. 

To simplify the treatment, it is assumed that tangen- 
tial velocities and interfacial turbulence, induced by 
surface-tension gradients, may be neglected. For pure 
systems this is a good approximation. Combination of 
the Bernoulli equation for the liquid pressure, the 
Laplace equation for the surface tension and the 
linearized Clapeyron equation, results in the following 
boundary condition, which is written in spherical 
coordinates, cf. [1]: 

a l  
-gRcos  8 - -- 

pR 

1 8R cos 8 
1 

R 88 sin O + 
I1 (1 8R~2il/2 

on r = R(O, t). 

1 f l l  0R'~2t3/2 

~ d R  (~) 
+ Or dt ' 

Combination of the terms dck/dt-(&~/c~r)(dR/dt) 
= 84~/8t represents the unsteady inertia part of the 
Bernoulli equation; the first term on the RHS repre- 
sents the convective inertia part. The second term 
represents the pressure difference, calculated with the 
Clapeyron equation. The third term describes the effect 
of gravity and the fourth term considers the compound 
bubble radius. In the examples presented here, the 
latter term was always small with respect to other 
terms. The heat requirement for evaporation or con- 
densation at the bubble boundary is given by the 
flux balance: 

kV T'  n = p~/(V¢- u,,). n, (2) 

on r = R(8, T). 
The condition that the flow velocity equals the 

displacement rate of the bubble boundary is expressed 
by: 

dR t~q~ I OR ~b 
dt 8r R 2 ~8 ~O" (3) 

The boundary conditions (1)-(3), combined with the 
Laplace equation for the velocity potential and the 
heat diffusion equation for the temperature, represent 
a well-posed partial differential problem if initial 
conditions are prescribed. 

17 

3. THE NUMERICAL METHOD 

3.1. The fiow field 
The solution of the potential equation with zero 

velocity for r -~ oo, symmetric with respect to the plane 
0 = ½~ and non-singular at 8 = 0 is: 

q~(r, :~, t) 
1 

= a k ( t ) ~ P 2 k ( C O S o q  ) . ( 4 )  

k = O  

Also, the radius of the bubble boundary is expanded in 
even Legendre polynomials: 

R((), t) = ~ bk(t)PEk(COS ~9). (5) 
k = 0  

The expansion coefficients ak(t), bk(t) can be de- 
termined by matching the general expressions (4) and 
(5) to the boundary conditions (1) and (3). This has to 
be done numerically and for reasons of computational 
efficiency, the collocation method has been used, cf. 
Finlayson [9]. In this method, the series (4) and (5) are 
truncated after N + 1 terms and the bubble boundary 
is discritized into a number of N + 1 so-called "col- 
location points". The boundary conditions (1) and (3) 
are applied on these points only. This procedure 
results in a set of coupled, non-linear ordinary differen- 
tial equations for the bubble radius on the collocation 
angles ¢ u ~0~}~=0 and for the velocity potential on the 
collocation points {/~(Oi,k), Oi}~_ o. 

cl ( ~ i ) =  FE{/~s,~s};=o], i =  O(1)N, (6) 
dt \Oi } 

where: 
N 

~,(t) = ~(o,, t) = Y~ [P~Icos oD]~(t),  (7) 
k = O  

~ ( t )  = ~(~ , ( t ) ,  0~, t) 
N V/ T \2k+1 ] 

=k--~O= l ' ) ~ R / ~  P2k(COSOi) J {lk(t)" (8) 

Numerically spoken, F is a subroutine in which at 
every timestep the matrix-equations (7) and (8) have to 
be solved. Since these matrices are not sparse, the 
number of collocation points may not be too high and 
special attention must be given to the scaling. Let 
boundary conditions (1) and (3) be represented by: 

= 0  i9) 

From interpolation theory it follows, that for the 
approximate solutions/~(g, t) and ~(r, #, t) the follow- 
ing inequality holds if the collocation cosines are taken 
as the zeros of a Chebyshev polynomial, cf. Fox and 
Parker [-10]: 

[ o (  )]  < , ,  
k ~ ( r , u , t ) / l r = ~ i . , t  I 2U(N+l)-- ! . (10) 

If the zeros of a Legendre polynomial are used, the 
RHS of (19) has to be multiplied by ( N + I )  1/2. For 
stably growing vapour bubbles, small variations in the 
initial and boundary conditions will result in small 
variations of the flow field. Hence, it follows from (10) 
that/~i, ~i converge to the exact solution for N --* ~ .  

H M T  Vol. 2I,  No. 1 • B 
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3.2. The thermal boundary layer 
For a thin thermal boundary layer the heat diffusion 

equation may be simplified to: 

?T p2T 
~ - = a  ~ - , .  (11) 
( I  ~ Z "  

Combination of equation (11 ) with heat flux boundary 
condition (21 results in, cf. [4]: 

p,,l 1 d 12 
TR(0, t) = 77, ( : ) ) -  i ; i : ; , i .2 ~li:Z-i; ~ (V0-u,,),. t<,,,-n. 

(12) 

In (12) the fractional notation is introduced, cf. [4, 6]. 
In every collocation point equation (12) has to be 
solved simultaneously with equation (6) for the bubble 
radius and the velocity potential. In principle also the 
flow field u,, in the vapour has to be solved, however, 
the vapour flow and temperature fluctuate rapidly 
with respect to changes in liquid flow and temperature. 
This convective phenomenon is due to the small 
density ratio p,,/p << 1, which causes that the vapour 
accelerates ill a timescale small in comparison with the 
timescale in which the liquid is accelerated. 

Consequently, on the timescale in which bubble 
growth takes place only a mean temperature TR(t) is 
observed. Furthermore, since p,,/p << 1, a small volume 
of liquid, evaporated at the bubble boundary, is 
transformed into a big volume of vapour. Con- 
sequently the bubble grows because it is blown up and 
not because liquid is removed by evaporation at the 
bubble cap. From the above discussion it is concluded 
that distortions in the bubble shape can only be 
explained by gravity and not by the different rates of 
evaporation or condensation at the vapour liquid 
interface. 

Now in equation (12) the mean vapour temperature 
7R(t) has to be inserted. By taking the mean value of 
equation (12) it is found that: 

where 

pfl 1 d 1,2 .... 
T R ( t )  = ~:, - p ( .  7,rT~ d}:-q.~ V~ .n. (13) 

i 
l,'2n 

A(t) = 27t R2(,(), t)sin 9 d;4, (14) 

~ 0 

2~z i ~ 1'2= 
U v . n  = -. A Ja=o(U,,'n),=RR2sinl)d0=0, (15) 

27z f 1 / 2;'t 
V~b'n =-74- (V0"n), RR2sin0d'~, (16) 

~_, = T~ (9)R2 sin 0dO. (17) 

, i= ) 

Equation (1 5) states that there is no net in- and outflow 
of vapour through the bubble cap. 

In order to be able to solve equation (13) numeri- 
cally, equation (13) is transformed by use of the 
Grfinwald definition of semi derivatives, cf. [4, 6] : 

d ( I ~ - - T ~  - ) 2 = 2  1 

dt T R ( O ) - -  T s a Ja 2 

( V O : n + t ~ ' ) W 0 n  t,, L (l~) 

E+(t) lim 

1 F '  l) t' ,it 
E (t) = l im 2 : 1 ' 2  ~ [ 

, , .~ ,  j _  , r ( i  4 1 )  ~x , " 

Ti le funct ions (19) and (20) are evaluated al tml~' 
t it.'.',: and they represent a memor? etlect. Since the 
effect of gravity on the bubble shape and not the 
coupling between the hydrodynamic and thermal 
equations is the aim of this study, the set (18) (201 is 
roughly approximated by putting E ~ -- E = 0 and 

when Vihi n changes sign, 7R is made discontinuously 
equal to ;l~. In this way oscillations are introduced 
artificially. These oscillations have a physical meaning 
as discussed below. 

When other bubbles suddenly start growing in the 
neighbourhood of the bubble under consideration, the 
bubble reacts on such a pressure step in a damped 
oscillatory way, cf. [4]. Consequently, the oscillations 
introduced here, represent a surrounding with growing 
bubbles: the amplitude is artificial but the frequency 
equals the eigenfrequency of the bubble. Note also the 
agreement with the experimental values presented in 
Figs. 5 and 7. 

3.3. The bulk liquid 
In this region, heat transport is assumed to take 

place by convection only. On t =  0, a mesh with 
temperatures -(a = 7"(r~,Oj, 0) is prescribed. Since 
these temperatures are fixed to moving fluid elements, 
the coordinales [r,(t). 0i(l)] oi temperature 77~ can be 
calculated from the flow velocity u/ri, a a, z )=  Vq, h~ 
order to simplify the calculations, the flow has been 
assumed radial so that ,~j is independent of time. The 
thermal boundary-layer thickness a(ai.t) is approxi- 
mated. 

Addition of 6{,'-)j, *) to R(Oj, t) gives the position of 
T,(,9i, t): the value of it is determined by linear 
interpolation. 

4. ROT,VIIONALL¥ S Y M M E T R I C  BUBBI,E ( ; rowrH 

4.1. E[lect o[initial temperature distribution 
In order to avoid the difficult problem of calculating 

or measuring the real initial temperature distribution. 
the solution of VZT = 0 in a cylinder or hemisphere is 
used, cf. Fig. 2. Figure 3 compares the results fc, r a 
hemisphere and a cylinder. Figure 4 shows that an 
increase in the initial superheated cylinder height H, 
results in an increase in the growth rate. 

4.2. ('omparis(ms with experimental data 
Figures 5 and 6 show the equivalent bubble radius 

and the bubble shape, respectively. 
The changes in bubble shape are due to gravity only, 

since thermal effects may be neglected by using a mean 
temperature. Also, gradients in surface tension have 
been neglected. A comparison with experimental data, 
cf. van Stralen ct al. [2] is made Figures 5 and 6 
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R s  

I Rc 

~ J S / / ' z / / ~ / / / / / / / / . ~ J  " "  T S * Oo ~ ~  zlf'y " Ts *0o 

/ Nucleus Nucleus 
Spherical symmetry Cylindrical symmefry 

FIG. 2. Liquid hemisphere and cylinder with boundary conditions for the temperature. The solution of the 
Laplace equation V2T = 0 is used as initial temperature distribution. 
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15 / " Poo = 26.72 kPo Wafer 

I T s =339.5 K 
e° =,22K / 

/ oo =,25 / ...- 

ot ...... 
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f - Cyl inder: Hc= 20 mm 

20 Ro I I I I 
0 5 I0 15 20 25 
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FIG. 3. Water boiling at 26.72 kPa. Effect of a spherically symmetric ( ) and a cylindrically symmetric 
( - - - )  temperature field, respectively, on bubble growth. 
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FIG. 4. Water boiling at 26.72 kPa. Bubble growth curve for various cylindrically symmetric temperature 
fields. 
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FIG. 5. 
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poo = 16.27 kPa 

T s =32[8.2 K 

0o=19.7 K j , o  

Ja=328 

/ / J  °" 

Theoretical Cylindrical symmetry:Re=30 mm ,He=4 mm 

~ e 5 "  Experimental--o-- 

~b 2S 3Jo 
f ,  m s  

Water boiling at 16.27 kPa. Compar i sons  between experimental ( o 
equivalent bubble growth curve. 

40 5C' 

o t and numerical ( - ) 
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Poo = 16 .27 kPa 
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8 o : 1 9 . 7  K 
Ja : 3 2 8  

' , k  I /  
"\, , , i  140 

. . . . .  Exper imen fa l  

Theoret ica l  
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X i I ! I J50 
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mm 

FIG. 6. Water boiling at 16.27 kPa. Profile of the vapour  bubble shown in Fig. 6 at various instants. The 
bubble contract ion due to gravity is compared with experimental data. 
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T = 339.5 K 
0o= 12.2 K 
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P o< 

W a t e r  f 

~ - - -o - - -  Experimental 
} Calculated 

I r I I -5 
5 I0 15 20 25 

t ,  mS 

5 

FIG. 7. Water boiling at 26.72kPa, cf. Fig. 4. Comparison between experimental ( - o - - o - - )  and 
numerical ( ) bubble growth curve. H, = 5 mm ; Rc = 30 mm. 
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FIG. 8. Water boiling at 26.?2 kPa. Computed isotherms around the bubble of Fig. 8. The edge of the thermal 
boundary layer has been dotted. 
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c o r r e s p o n d  with Fig. 5, cf. [2],  Fig. 7 c o r r e s p o n d s  with 
Fig. 3, cf. [2]. It m a y  be not iced ,  tha t  the original  value 
of  the  J a k o b  n u m b e r  has been changed  here  by tak ing  
the  hydros t a t i c  p ressure  in account .  In Fig. 8 the 
ca lcula ted  i so the rms  are s h o w n  a round  the bubb le  
depic ted  in Fig. 7. 

5. CONCL( SION 

The  gross  fea tures  of  the  c o m p u t e d  da ta  can be li t ted 

to the  m e a s u r e d  da t a  by choos ing  the  initial  t empera -  
ture  field suitably. On ly  when  the  actual  t e m p e r a t u r e  
d i s t r ibu t ion  is m e a s u r e d  exper imenta l ly  and  when  the 
the rmal  diffusion equa t ion  is solved m o r e  accurately,  

an es t ima t ion  can be m a d e  of  the effect of  a thin 
e v a p o r a t i n g  liquid mic ro layer  benea th  a g rowing  

bubble.  
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CROISSANCE D'UNE BULLE DE VAPEUR DANS LES CHAMPS COLPIA S 
DE GRAVITATION ET DE TEMPERATURE NON UNIFORME 

Rosum6 La croissance des bulles de vapeur symetriques rotalionnellemenl, sur une plaquc horizon!ale. 
a 6t6 6tudide en r6solvant numdriquemenl los dquations du mouvement. On a appliqud pour ccla la 
m6thode globale de collocation, cf. Zijl [1]. On considhre les d&iations fi partir dc la forme sphdriqne. 
lesquelles sont dues '5. la gravitd. Une restriction est faite pour le stade initial de corm'action du rayon 
de contact de la bulle. 

Les rdsultats num6riques pour des distributions initiales tic tempdralure approprides son! en bon 
accord qualitatif avec des exphriences antdrieures de Van Stralen eta / .  [2, 3] sur l'eau, bouillant il des 
pressions subatmosph4riques. Un accord quantitatif est obtenu en ajustant seulement un paramctre 
adimensionnel, la hauteur initiale du cylindre ou de l'hdmisphbre de liquide surchauffd. On introdnil 
numeriquement les oscillations obserw?es expdrimentalement dans le rayon 6quivalen! de bulle pendant la 
croissance. Une interpr4tation physique de ce phdnomhne est donndc pal" Van Stralem Zijl et de Vries [4]. 

La fr6quence de ces oscillations croit avec Faugmentation de la pression, donc de la densitd dc la 
vapeur. On calcule en outre l'6paisseur de la couche limilc thermique autour de la bulle et Its positkms 

instantan6es des isothermes dans le liquide cnvironnant. 

DAS WACHSTUM VON DAMPFBLASEN IN KOMBINIERTEN 
GRAVITATIONS- UND UNGLEICtIFO'RMIGEN TEMPERATURFELDERN 

Zusammenfassung Durch numerisches LOsen der Bewegungsgleichungen wurde das Wachstum rotations- 
symmetrischer Dampfblasen auf einer horizontalen, ebenen Fliiche untersucht. Dabei wurde die globale 
Kollokationsmethode nach Zijl [1] angewandt. Schwerkraftbedingte Abweichungen yon der sphfirischen 
Blasenform werden hierbei berficksichtigt. Einschr/inkungen werden for das anfiingliche Stadium mit 
Kontraktion des Blasen-Kontaktradius geltend gemacht. Die aus geeigneten Anfangstemperaturfeldern 
ermittelten numerischen Ergebnisse stimmen qualitativ mit frfiheren MeBergebnissen yon van Stralen u.a. [2, 
3] for siedendes Wasser bei Unterdruck/iberein. Eine quantitative Ubereinstimmung wird durch Anpassen 
eines einzigen dimensionslosen Parameters, niimlich der Anfangsh6he eines Zylinders oder einer Halbkugel 
aus fiberhitzter Flfissigkeit, erzielt. Die experimentell beobachteten Oszillationen des iiquivalenten 
Blasenradius w/ihrend des Wachstums werden ebenfalts numerisch eingeffihrt. Eine physikalische Erkl/irung 
dieses Phfinomens wird yon van Stralen, Zijl und de Vries [4] gegeben. Die Frequenz dieser Oszillationen 
nimmt mit steigendem Druck, d.h. mit steigender Dampfdichte zu. Zusfitzlich werden sowohl die Dicke der 
thermischen Grenzschicht um die Blase wie die augenblicklichen kagen der lsothermen in der umgebenden 

Flfissigkeit berecbnet. 
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POCT l I Y 3 b I P ~ l  H A P A  B F P A B H T A U H O H H O M  H H E O ~ H O P O , ~ H O M  
T E M H E P A T Y P H O M  HOYIE 

A m o T a n a a -  B pa6oTe nccae~lyeTca pOCT oceCHMMeTpH~IHblX ny3blpefi napa  Ha FopH3OHTaJ1bHO~ 
ImaCTHne ~a OCaOae ,~acaennoro pemeHn~ ypasHeHni~ ~Ian~eHaa c noMombm r a o 6 a a b n o r o  roa -  
a a r a u n o n n o r o  MeTO11a [1]. PaCCMOTpeHbl c a y s a n  OTK2IOHeHHR ~bOpMM nyablpa OT cdpcpnsecro~ 3a 
CtleT CHYlbI T~I~eCTI~ H orpanHLIeHng Ha HaqaJlbHO~ CTa~IH yMeHbllleHH~l KOHTaKTHOrO pa~nyca  
ny3blp~. Pe3y~bTaTbl pacaeTOa COOTBeTCTBy~ORInX pactlpelle~eHn~ HaqanbHO~ TeMnepaTypbl 
KaqeCTBCHHO coBna~Ia~oT c 9KCIIepHMCHTaYlbHblMH ~anHbIMn Ban UlTpaneHa n ~lp. [2, 3] no KHHeHHIO 
SO,hi npn ~aaJIeHHn, HH)KC aTMOCt~pHOI'O. KOYIHLICCTBeHHOe co raacae  ~IOCTHFHyTO HyTeM no~6opa  
TO.ffI~KO O~HOFO pa3MepHoro napaMeTpa - -  HaqaJIbHO~ BblCOTbI UH~HH~pHqeCKoro H~n nonyc0pepn- 
qecroro  o61,eMa neperpeTo~ BO~bI. B LIHCYIeHHOM Bn~e glpe1ICTaBJleHbI nyabcaunn  3KBHBaSIeHTHOFO 
pa~nyca  ny3blpa BO BpeMa pocTa, q~n3naecroe TO21KOBaHHC 3TOrO ~lBYleHnfl IlpnBO~I4TCfl B pa6oTax 
BaH IllTpa~eHa, 3 n ~ l g  n ~ e  Bpn3a [4]. qacToTa ny~bcauni~ aoapac~raeT c yae~naeHneM ~IaaJ~eHnfl, 
T. e. c yae~l~qenneM nJIOTHOCTH napa. KpoMe TOrO, pacc~tnTaHbl TO~RIHHa TetI~IOBOrO norpaHn~Horo 

c~og aoKpyr ny3blpR n MFHOBeHHOe pacnoJ~o>KeHne H3oTepM B oKpy>ra~ou~e~ X~n~IKOCTn. 
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