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Abstract—The growth of rotationally symmetric vapour bubbles on a horizontal plane has been studied by
solving the equations of motion numerically. For this purpose, the global collocation method has been
applied, cf. Zijl [1]. In this way deviations from the spherical bubble shape, which are due to gravity, are
considered. Restriction is made to the initial stage of contraction of the bubble contact-radius. The numerical
results following from appropriate initial temperature distributions are in qualitative agreement with
previous experimental data by van Stralen er al. [2, 3] on water, boiling at subatmospheric pressures.
Quantitative agreement is obtained by fitting only one dimensional parameter, i.e. the initial height of a
superheated liquid cylinder or hemisphere. Also, experimentally observed oscillations in the equivalent
bubble radius during growth are introduced numerically. A physical interpretation of this phenomenon is
given by van Stralen, Zijl and De Vries [4]. The frequency of these oscillations increases with increasing
pressure, i.e. with increasing vapour density. In addition, both the thickness of the thermal boundary layer
around the bubble and the instantaneous locations of the isotherms in the surrounding liquid are calculated.

NOMENCLATURE R,,  radius of a cylinder with superheated
a, (=k/pc), liquid thermal diffusivity liquid above heating surface [m];
[m?/s]; R, radius of hemisphere with superheated
A,  area of the bubble cap [m?]; liquid above heating surface [m];
a,(t), expansion coefficient in a series; R, [=0 V/4r)!*] equivalent bubble radius
b,(t), expansion coefficient in a series; [m];
c, liquid specific heat at constant Ry, R,, principal radii of curvature of the
pressure [J/kgK]; bubble boundary [m];
D, nonlinear differential operator; Ry,  (=20Ty/p,I(Tx(0)— Ty)) equilibrium
E™(t), functions representing a memory effect; bubble radius [m];
E~(t), of the heat diffusion process [m/s]; t, time elapsed since the bubble has
F, 2N +2 dimensional vector function started growth [s];
g, gravitational acceleration [m/s?]; T(r,3,t), liquid temperature [K];
H,  height of a cylinder with superheated Tx(t), mean temperature at the bubble
liquid above heating surface [m]; boundary [K];
Ja,  {=pc[T(0)—~T.]/p !} Jakob number for T, (9,t), liquid temperature at the outer side of
superheated liquid; the thermal boundary layer [K];
k, liquid thermal conductivity [W/mK]; T, (t), mean liquid temperature at the outer side
K,  constant number 0 < K < o0; of the thermal boundary layer [K];
I, latent enthalpy of vaporization [J/kg]; T, saturation temperature at pressure
n, unit vector normal to bubble surface; P. [K];
N, number of collocation points minus one; Tx(0), initial vapour temperature at the time
P, liquid pressure [Pa]; of nucleation [K];
p,  vapour pressure [Pa]; u, liquid velocity vector [m/s];
Pr  liquid pressure at bubble boundary [Pa]; u,  vapour velocity vector [m/s];
Po» liquid pressure at great distance from v, volume of the bubble [m?];
the bubble [Pa]; z, distance normal to the bubble
P, Legendre polynomial of order zero and boundary [m].
degree n;
¥, radial coordinate in spherical Greek symbols
coordinate system [m]; T, gamma function;
R(8, t),bubble radius in spherical coordinate 9, thickness of the thermal boundary
system [m]; layer [m]};
3, azimuthal angle in spherical coordinate

system;

*Present address: Van't Hoff Laboratory, State University 0o, [ T.(0)— Ty] initial superheating of
of Utrecht, Utrecht, The Netherlands. the vapour in the bubble [K];
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He (=cos $) azimuthal cosine:
v, liquid kinematic viscosity [m?/s];

0 liquid density [kg/m’];
p.  vapour density [kg/m?*]:

a, surface tension coefficient at liquid
vapour interface [N/m]:
o, liquid velocity potential {m?/s].
Subscripts
i, number of a temperature point on 4 line

characterized by 9;:

g number of collocation angle 4;:

%,  at great distance from the bubble:

R. at the bubble boundary.
Superscripts

mean value:
differentiation with respect to time [ 1/5]:
approximate value.

1. INTRODUCTION
1.1. Previous investigations

Effect of bubbles on heat transfer. Vapour bubbles
have a substantial influence on nucleate boiling heat
transfer, and result in an augmentation of the cor-
responding convective contribution. This is the case
both in saturated and in subcooled boiling, where the
bubbles implode rapidly after initial growth.

The relaxation microlayer theory by van Stralen
[5] expresses both bubble behaviour and bubble-
induced heat transfer at the wall into convection.
Recently, this model has been extended to combine the
contribution to bubble growth due to the relaxation
microlayer (around the lower part of the curved
bubble boundary) with the contribution due to heat
transmission through an evaporating microlayer (be-
neath the bubble), ¢f. [2]. The initial superheating
enthalpy of both microlayers is taken from the cor-
responding convective thermal boundary layer at the
wall, which is renewed during the waiting time between
succeeding bubbles generated at the same nucleation
site.

Bubble growth rates. Initial (isothermal) bubble
growth is governed by liquid inertia, i.e. the bubble is
blown up due to an excess pressure, which results from
a superheating of the vapour. This superheating
decreases gradually due to evaporation at the bubble
boundary. until advanced (isobaric) bubble growth is
determined by heat- (and mass-) diffusion.

The theoretical predictions are in quanutative
agreement with experimental data on water boiling at
various subatmospheric pressures. In this model the
relative height of the relaxation microlayer is fitted to
the experimental bubble departure radius [3]. Both
the bubble radius and the departure time increase
substantially with decreasing pressure. At pressures
below 3 kPa, the superheating of the bubble boundary
decreases only slightly, resulting in the occurrence of
large “Rayleigh bubbles™ [3]. The effect of gravity,
which causes detachment, has not been incorporated
into this model [2] and another disadvantage is the

empirical description of the transition between the
modes of initial and diffusion-controlled growth.

1.2. Scope of the present investigations

Bubble oscillations. 1t has been shown by vun
Stralen, Zijl and De Vries [4], using the theory of
fractionalderivatives [ 6], that both the volume and the
temperature of free vapour bubbles may oscillate
during growth. The nature of these oscillations orig-
inates from combined liquid inertia and transient heut
conduction, which causes the changes in liquid vel-
ocity to lay behind changes in excess pressure. Stmlay
oscillations in the bubble volume have been obsersved
experimentally by van Stralen [T}
obvious from the data presented in [3]. At present. the
growth of rotationally symmetric vapour bubbles in s
gravitational field is investigated numerically by solv-
ing the Bernoulli equation for the pressure with the
global collocation method. cf. Ziji [ 1].

Various initial temperature distributions in the
superheated liquid above the horizontal wall wre
taken. since the initial field is expected to have «
substantial effect on bubble growth rates. This effect 1=
also incorporated into the semi-empirical treatment of
Mikic e al. [8].

and  are also

2. MATHEMATICAL FORMULATION
Since the density of the vapour in the bubble
depends only on the hardly varying temperature. the
vapour may be considered as incompressible. Con-
sequently one has to start from the Navier--Stokes
cquations for an incompressible fluid to describe the
flow- and temperature fields inside and outside a
bubble.
In the present investigation, bubble growth on a flat
horizontal superheated wall has been studied. of. Fig. 1.

Liquid

i
i
{
1

Rotationally symmetric vapour bubble adhering to a
superheated horizontal wall.

Fic. 1.

The heat flux at the wall has been neglected. The
heating surface is assumed to be a plane of symmetry
between the bubble under consideration and a “mirror
bubble”. Hence, the normal velocity conditionu-n = 0
is satisfied automatically. Furthermore, the no-slip
condition does not play a role since the viscous layer,
along which the liquid moves smoothly, is assumed to
be thin. For the same reason no assumption needs to
be made about the contact angle. In addition, it is
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assumed that the influence of the tangential stress
condition on the bubble boundary is limited to a thin
hydrodynamic boundary layer around the bubble.
This assumption is based on the absence of a viscous
wake behind a non-translating bubble. Under the
above mentioned restrictions, potential flow theory
may be applied in the liquid outside the bubble.

In order to solve the temperature field, two regions
are considered: (i) a thin thermal boundary layer
around the bubble, and (ii) the remaining bulk liquid.
Since the thermal boundary layer has an overlap with
the hydrodynamic boundary layer, the flow field in the
latter can influence the heat transfer rate substantially.

To simplify the treatment, it is assumed that tangen-
tial velocities and interfacial turbulence, induced by
surface-tension gradients, may be neglected. For pure
systems this is a good approximation. Combination of
the Bernoulli equation for the liquid pressure, the
Laplace equation for the surface tension and the
linearized Clapeyron equation, results in the following
boundary condition, which is written in spherical
coordinates, cf. [1]:

do 00\ (15¢ U pl
RS | e &) I P (- T,
dr 2{<6r + R 09 % pTS( r=Ty)
16RY 10°R
+(xs) R
—gRcos 9 — — T3RZ 37
1
{ +(R as) }
_i@RcosS
R 08 sin oo dR
* GRS E?dz M
(v ) |
onr = R(J 1)

Combination of the terms d¢/dt — (6¢/ér)(dR/dt)
= 0¢p/0t represents the unsteady inertia part of the
Bernoulli equation; the first term on the RHS repre-
sents the convective inertia part. The second term
represents the pressure difference, calculated with the
Clapeyron equation. The third term describes the effect
of gravity and the fourth term considers the compound
bubble radius. In the examples presented here, the
latter term was always small with respect to other
terms. The heat requirement for evaporation or con-
densation at the bubble boundary is given by the
flux balance:

kVT'n=p,IVd—u,)n, 2)

onr=R(3T)

The condition that the flow velocity equals the
displacement rate of the bubble boundary is expressed
by:

dR d¢ 1 0R ¢

& "o RS ®)

The boundary conditions (1)-(3), combined with the
Laplace equation for the velocity potential and the
heat diffusion equation for the temperature, represent
a well-posed partial differential problem if initial
conditions are prescribed.
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3. THE NUMERICAL METHOD

3.1. The flow field

The solution of the potential equation with zero
velocity for r — oo, symmetric with respect to the plane
8 = in and non-singular at $ = 0 is:

3]

1
2 al )r 73T Pan(cos 9). “4)

k=0

¢(1‘, 9, t) =

Also, the radius of the bubble boundary is expanded in
even Legendre polynomials:

R®, 1) = Z b (t)P,,(cos 3). (5)
k=

The expansion coefficients a,(t), b {t) can be de-
termined by matching the general expressions (4) and
(5) to the boundary conditions (1) and (3). This has to
be done numerically and for reasons of computational
efficiency, the collocation method has been used, cf.
Finlayson [9]. In this method, the series (4) and (5) are
truncated after N + 1 terms and the bubble boundary
is discritized into a number of N+1 so-called “col-
location points”. The boundary conditions (1) and (3)
are applied on these points only. This procedure
results in a set of coupled, non-linear ordinary differen-
tial equations for the bubble radius on the collocation
angles {9}/, and for the velocity potential on the
collocation points {R(9; ), 9} o

d Ri -3 N s
E(a)=fnxﬁ@bwl i= 01N, ()

where:
Rit)= RO 0 = ¥ [Pufcos8)1b(0),  (7)
k=0
dit) = P(Ri(1), 9, 1)
N 1 2k+1 _
= k;’ \V(Ri(t)) P, (cos Si)}ak(t). (8)

Numerically spoken, F is a subroutine in which at
every timestep the matrix-equations (7) and (8) have to
be solved. Since these matrices are not sparse, the
number of collocation points may not be too high and
special attention must be given to the scaling. Let
boundary conditions (1) and (3) be represented by:

Rip, 1)
D =0. 9
[ (gb(l", A, t)>‘lr:R(l'vt) ( )

From interpolation theory it follows, that for the
approximate solutions R(y, t) and ¢(r, g, t) the follow-
inginequality holdsif the collocation cosines are taken
as the zeros of a Chebyshev polynomial, ¢f. Fox and
Parker [10]:

[ (R(u, t) ﬂ K
D -
o(r, u, 1) 2N(N+1)'

If the zeros of a Legendre po]ynomlal are used, the
RHS of (19) has to be multiplied by (N +1)"2. For
stably growing vapour bubbles, small variations in the
initial and boundary conditions will result in small
variations of the flow field. Hence, it follows from (10)
that R;, ¢, converge to the exact solution for N — oo.

(10)



18 1. G. H. Joosten, W. ZuL and S. J. D. vAN STRALEN

3.2. The thermal boundary layer
For a thin thermal boundary layer the heat diffusion

equation may be simplified to:
cT T

=g )
ct ozt

{11)

Combination of equation (11) with heat flux boundary
condition (2) results in, cf. [4]:

. ooopd 1o dT
Tet)y=T,(}) — /5(: e (Vo —u,), .. g 1.

(12)

In (12) the fractional notation is introduced, cf. {4, 6].
In every collocation point equation (12) has to be
solved simultaneously with equation (6) for the bubble
radius and the velocity potential. In principle also the
flow field u, in the vapour has to be solved, however,
the vapour flow and temperature fluctuate rapidly
with respect to changes in liquid flow and temperature.
This convective phenomenon is due to the small
density ratio p,/p « 1, which causes that the vapour
accelerates in a timescale small in comparison with the
timescale in which the liquid is accelerated.

Consequently, on the timescale in which bubble
growth takes place only a mean temperature Ty(t) is
observed. Furthermore, since p,/p <« 1, a small volume
of liquid, evaporated at the bubble boundary. is
transformed into a big volume of vapour. Con-
sequently the bubble grows because it is blown up and
not because liquid is removed by evaporation at the
bubble cap. From the above discussion it is concluded
that distortions in the bubble shape can only be
explained by gravity and not by the different rates of
evaporation or condensation at the vapour-liquid
interface.

Now in equation (12) the mean vapour temperature
T(t) has to be inserted. By taking the mean vulue of
equation (12) it is found that:

ol od
T()=T, -2 " ve- 13
#(0) pea'?de 2 ¢:n (13)
where
~12n
A(t)=2n R%(9.t)sin 3d%, (14)
Y =0
— 27‘[ 120
T em),o R sinddy =0, (15)
e 27_[ 1/2n
V¢-n=q[ (Vo -n),_xRZsin8dy. (16)
Yioo
o 2 *1:2r
T, = Z" T, (9)R*sin 3d9. (17)

Y =0

Equation (15)states that thereis no netin- and outflow
of vapour through the bubble cap.

In order to be able to solve equation (13) numeri-
cally, equation (13) is transformed by use of the
Griinwald definition of semi derivatives, cf. [4, 6]:

d( 1T, ) 21
dt\TrO) - Ty) — aJd

(Vén+E WV n—L 1 (18]
1 N*lr- .
i 2 *gig-szrn(r-—%}, (19)

E () = lim — :
No= o 27[1 2 j=1 r([+])

e DU S W
V¢ n (r N ) (20}
The lunctions (19} and (20) are evaluated at tme
t—it:N and they represent a memory effect. Since the
effect of gravity on the bubble shape and not the
coupling between the hydrodynamic and thermal
equations is the aim of this study, the set (18)-(20)is
roughly approximated by putting £ = E~ =0 and
when V¢ -n changes sign, Ty is made discontinuously
equal to T . In this way oscillations are introduced
artificially. These oscillations have a physical meaning
as discussed below.

When other bubbles suddenly start growing in the
neighbourhood of the bubble under consideration, the
bubble reacts on such a pressure step in a damped
oscillatory way, cf. [4]. Consequently. the oscillations
introduced here, represent a surrounding with growing
bubbles ; the amplitude is artificial but the frequency
equals the eigenfrequency of the bubble. Note also the
agreement with the experimental values presented in
Figs. Sand 7.

3.3. The bulk liquid

In this region, heat transport 1s assumed to take
place by convection only. On 1 =0, a mesh with
temperatures  T;; = T(r.,3,,0) is prescribed. Since
these temperatures are fixed to moving fluid elements,
the coordinates [r{r).9;(1)] of temperature T, can be
calculated from the flow velocity u(r;, %, 1) = V¢ In
order to simplify the calculations, the flow has been
assumed radial so that 3; is independent of time. The
thermal boundary-layer thickness 3(3,.t) is approxi-
mated.

Addition of 3(9,1) to R(3,, 1) gives the position of
T,.(9,. ). the value of it is determined by linear
interpolation.

4., ROTATIONALLY SYMMETRIC BUBBLE GROWTH

4.1. Effect of initial temperature distribution

In order to avoid the difficult problem of calculating
or measuring the real initial temperature distribution,
the sotution of V3T = 0 in a cylinder or hemisphere is
used, cf. Fig. 2. Figure 3 compares the results for a
hemisphere and a cylinder. Figure 4 shows that an
increase in the initial superheated cylinder height H,
results in an increase in the growth rate.

4.2, Comparisons with experimentul data

Figures 5 and 6 show the equivalent bubble radius
and the bubble shape, respectively.

The changes in bubble shape are due to gravity only,
since thermal effects may be neglected by using a mean
temperature. Also, gradients in surface tension have
been neglected. A comparison with experimental data,
cf. van Stralen et al. [2] is made. Figures 5 and 6
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Ts+86,
Nucleus Nucleus
Spherical symmetry Cylindrical symmetry

Fi1G. 2. Liquid hemisphere and cylinder with boundary conditions for the temperature. The solution of the
Laplace equation V2T = 0 is used as initial temperature distribution.
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F1G. 3. Water boiling at 26.72kPa. Effect of a spherically symmetric (——) and a cylindrically symmetric
(——-) temperature field, respectively, on bubble growth.
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T, = 3395 K L
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FIG. 4. Water boiling at 26.72kPa. Bubble growth curve for various cylindrically symmetric temperature
fields.
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Water

I8} po=16.27 kPa

T,:328.2 K

6,:=19.7 K <
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Theoretical Cylindrical symmetry:R.=30mm H.=4mm
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F1G. 5. Water hoiling ut 16.27 kPa. Comparisons between experimental {-- o o——jand numerical (—- -)
equivalent bubble growth curve.

P, = 16.27 kPa
T, =328.2 K
110
8 =19.7K
Ja =328
120

Experimental
Theoretical

mm

FIG. 6. Water boiling at 1627 kPa. Profile of the vapour bubble shown in Fig. 6 at various instants. The
bubble contraction due to gravity is compared with experimental data.
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p =26.72 kPa Water
T =339.5 K -
=2k T
2.2 K g o Jdo

Ja= 125

—-—-o-——Experimental
} Calculated

FiG. 7. Water boiling at 26.72kPa, cf. Fig. 4. Comparison between experimental (--o—-o--} and
numerical (——) bubble growth curve. H, = 5mm; R, = 30 mm.

p =26.72 kPa Water
T =3395 K
6,=12.2 K
Ja =125 339.5 K
341.3K
®
3452K

/ 346.2K
*
19[ Ty

e

®

348.0K & 347.5K

T o ) % // )

255, % 7)) ///,

F1G. 8. Water boiling at 26.72 kPa. Computed isotherms around the bubble of Fig. 8. The edge of the thermal
boundary layer has been dotted.
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correspond with Fig. 5, cf. [2], Fig. 7 corresponds with
Fig. 3,cf [2]. It may be noticed, that the original value
of the Jakob number has been changed here by taking
the hydrostatic pressure in account. In Fig. § the
calculated isotherms are shown around the bubble
depicted in Fig. 7.

5. CONCLUSION

The gross features of the computed data can be fitted
to the measured data by choosing the initial tempera-
ture field suitably. Only when the actual temperature
distribution is measured experimentally and when the
thermal diffusion equation is solved more accurately,
an estimation can be made of the effect of a thin
evaporating liquid microlayer beneath a growing
bubble.
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CROISSANCE D'UNE BULLE DE VAPEUR DANS LES CHAMPS COUPLES
DE GRAVITATION ET DE TEMPERATURE NON UNIFORME

Résumé---La croissance des bulles de vapeur symétriques rotationnellement, sur une plagque horizontale.
a été étudiée en résolvant numériquement les ¢quations du mouvement. On a appliqué pour cela fa
méthode globale de collocation, ¢f. Zijl [1]. On considére les déviations a partir de la forme sphérique.
lesquelles sont dues a la gravité. Une restriction cst faite pour le stade initial de contraction du ravon

de contact de la bulle.

Les résultats numériques pour des distributions initiales de température appropriées sont en bhon
accord qualitatif avec des expériences antéricures de Van Stralen ¢t al. [2.3] sur eau. bouillant i des
pressions subatmosphériques. Un accord quantitatif est obtenu en ajustant seulement un paramétre
adimensionnel, 1a hauteur initiale du cylindre ou de 'hémisphére de liquide surchauffé. On introduit
numériquement les oscillations observées expérimentalement dans le rayon équivalent de bulle pendant Ja
croissance. Une interprétation physique de ce phénomeéne est donnée par Van Stralen, Zijt et de Vries [4].

La fréquence de ces oscillations croit avec I'augmentation de Ja pression. done de la densit¢ de la
vapeur. On calcule en outre Pépaisseur de la couche limite thermique autour de la bulle et les positions

instantanées des isothermes dans le liguide environnant.

DAS WACHSTUM VON DAMPFBLASEN IN KOMBINIERTEN
GRAVITATIONS- UND UNGLEICHFORMIGEN TEMPERATURFELDERN

Zusammenfassung—Durch numerisches Losen der Bewegungsgleichungen wurde das Wachstum rotations-
symmetrischer Dampfblasen auf einer horizontalen, ebenen Fliche untersucht. Dabei wurde die globale
Kollokationsmethode nach Zijl [ 1] angewandt. Schwerkraftbedingte Abweichungen von der sphirischen
Blasenform werden hierbei berticksichtigt. Einschriinkungen werden fir das anfingliche Stadium mit
Kontraktion des Blasen-Kontaktradius geltend gemacht. Die aus geeigneten Anfangstemperaturfeldern
ermittelten numerischen Ergebnisse stimmen qualitativ mit friiheren MeBergebnissen von van Stralen u.a. [2,
3] fiir siedendes Wasser bei Unterdruck iiberein. Eine quantitative Ubereinstimmung wird durch Anpassen
eines einzigen dimensionstosen Parameters, niimlich der Anfangshohe eines Zylinders oder einer Halbk ugel
aus iiberhitzter Flissigkeit, erzielt. Die experimentell beobachteten Oszillationen des dquivalenten
Blasenradius wihrend des Wachstums werden ebenfalls numerisch eingefiihrt. Eine physikalische Erklirung
dieses Phidnomens wird von van Stralen, Zijl und de Vries [4] gegeben. Die Frequenz dieser Oszillationen
nimmt mit steigendem Druck, d.h. mit steigender Dampfdichte zu. Zusitzlich werden sowohl die Dicke der
thermischen Grenzschicht um die Blase wie die augenblicklichen Lagen der Isothermen in der umgebenden
Flissigkeit berechnet.
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POCT T1V3bIPA TTAPA B TPABUTALIMOHHOM M HEOJHOPOJHOM
TEMIIEPATYPHOM I10JIE

Ansoraius — B pabote uccnenyercss pocT OceCHMMETPHUYHbIX ITy3blpeil Tlapa Ha TOpPH3OHTalbHOMH
IUTACTHHE HA OCHOBE YMCJIEHHOTO pELIEHHMs YpaBHEHMM NBMXEHHS C NMOMOLIBIO TJi00aNBLHOTO KOJI-
naxauuonHoro Mmerona [1]. PaccMoTpens! citydam OTKIIOHEHHs (OPMBI My3bIpsA OT cepHdeckoil 3a
CHET CHJILI TSDKECTH M OTpaHMYEHMsl HAa HAYa/IbHOM CTaJMM YMEHbLIEHHS# KOHTaKTHOTO pajuyca
ny3pipsi. Pe3ynbpraThl PacYeTOB COOTBETCTBYIOLUMX paclpereneHMi Ha4albHOM TeMIepaTyphl
KAYeCTBEHHO COBMALAIOT ¢ YKCIIEPHMEHTANLHBIMK JaHHbIME Bau ltpaneHa u ap. [2, 3] no kunexuto
BOJIbl TIPH JaBNEHHH, HUXe aTMocdepHoro. KonuuecTBeHHOE corlacHe JOCTHIHYTO myTeM noabopa
TOJBLKO OJHOTO Pa3MEPHOro mapamMerpa — HayajdbHOH BBHICOTHI LIMJIMHAPHYECKOTO MM nonycdepu-
4ecKkoro oonema neperpeToil Boabl. B YHCIIEHHOM BHjE NpEACTaBNEHbI NybCAlMM 3KBHBAJICHTHOTO
paznuyca Mmy3bips BO Bpems pocTta. DU3MYECKOE TOJNKOBaHHE 3TOrO sIBJECHUA NMPHBOAMTCSA B paboTax
Bau Hlrpanena, 3uitas u [le Bpusa [4]. YactoTta mynscaumit po3padraer ¢ yBenMYEHNEM NaBIICHHUS,
T. €. C YBEJTMMEHHEM TUIOTHOCTH napa. Kpome TOro, paccynTaHbi TOJIHHA TEIUIOBOTO NIOTPAHHYHOTO
CII0St BOKPYT My3bIPsi M MTHOBEHHOE PACHOJIOXEHHE H30TEPM B OKPYXKAIOIIEH KUIKOCTH.



